
92 The Delphi Magazine Issue 50

COM Corner:
New COM Features In Delphi 5
by Steve Teixeira

It’s that special time of the year
again, when we all wait with

anticipation for the postman to
come knocking with the latest copy
of Delphi in hand. Once we get it
installed, we immediately fire it up
to answer the question playing
over and over again in our minds,
‘What’s in this new version for me?’
Well, if you happen to be a COM
developer, make yourself comfort-
able because we’re about to dis-
cuss what’s new for COM
developers in Delphi 5.

Active Server Objects
Delphi 5 introduces a new wizard
that enables easy creation of
Active Server Objects, which are
COM objects designed to be used
in the context of Active Server
Pages (ASPs).

If you’re unfamiliar with ASPs,
they provide a means for combin-
ing some mix of HTML, VBScript,
JScript, Automation objects and
Java classes in order to generate
dynamic web content. In contrast
to regular static web pages (HTML
files), which are simply passed
through by the web server to the
client, ASP files are interpreted by
the web server before content is
sent to the client. As a part of this
interpretation, the server will exe-
cute script within the document
and create instances of objects
specified in the script. The scripts
and object typically generate
dynamic HTML content, which can

then be passed on
to the web client
along with any
plain old HTML
contained in the
ASP document. The
advantage of the
ASP model is that
scripts are inter-
preted by the
server prior to the
document being
passed to web cli-
ents, so content
can be dynamic
and scripts do not
need to be run on the clients.

While ASPs can work with any
Automation object, Automation
objects that are aware of the con-
text in which they are executing
will integrate much more snugly.
There are two ways that an Active
Server Object can make itself
aware that it is executing within
the context of an ASP. The older
technique, designed for Internet
Information Server (IIS) 3 and 4,
involves the Automation Object
exposing methods called OnStart-
Page and OnEndPage. The current
technique, used with IIS 5, involves
calling the GetObjectContext COM
API function to obtain the current
execution context.

If you are designing objects for
IIS 3 or 4, OnStartPage is called after
the web server loads the ASP and
an instance of the Automation
server has been created, while
OnEndPage is called just before the
web server is through processing

the page. The execution context is
passed as a parameter to
OnStartPage method in the form of
an IUnknown that supports the
IScriptingContext interface. These
methods are implemented auto-
matically in the code generated by
the wizard for Active Server
Objects and the framework behind
the wizard.

For IIS 5, Active Server Objects
are loading within the context of
Microsoft Transaction Server
(MTS) and therefore objects are
able to call GetObjectContext at any
time to obtain information about
the execution context. If you’re
unfamiliar with MTS, you may wish
to take a look at the May and June
1999 issues, where I discuss this
technology in detail.

When you’re ready to create a
new Active Server Object, you may
do so by clicking File | New... and
selecting the Active Server Object
item from the ActiveX page of the
New Items dialog. You will then be
presented with the New Active
Server Object dialog, which is
shown in Figure 1.

Most of this dialog should be
familiar to you, as it is based on the
Automation Object wizard. Differ-
ent in this dialog, however, are the

➤ Figure 1

<HTML>
<BODY>
<TITLE> Testing Delphi ASP </TITLE>
<CENTER>
<H3>You should see the results of your Delphi Active Server method below</H3>
</CENTER>
<HR>
<% Set DelphiASPObj = Server.CreateObject("SteveASO.SteveServerObj")

DelphiASPObj.{Insert Method name here}
%>
<HR>
</BODY>
</HTML>

➤ Listing 1

October 1999 The Delphi Magazine 93

options for selecting the server
type and choosing whether to
create a test ASP document. The
server type options enable you to
select whether you wish the object
to function as an IIS 3/4 object or an
IIS 5 object, as described above. If
you choose to create a test ASP, a
text file will be created for you that
looks very much like the one
shown in Listing 1.

You’ll notice the bit of VBScript
in the middle of this document that
creates the instance of the object,
followed by a line of code that
shows how to call a method on the
Automation server. To demon-
strate, I will add a method to the
object called DoIt that emits some
text to the web client. I do this by
adding the method to the interface
in the type library editor, and filling
in the implementation for the stub
generated in the source file. Listing
2 shows the complete source for
the unit containing my Active
Server Object.

You might be asking yourself,
‘Hey, where is all that Request and
Response stuff coming from in the
DoIt method?’ These are proper-
ties of the ancestor class whose
values are obtained using the
object context I mentioned earlier.
This particular object supports IIS
5 and therefore descends from
TASPMTSObject, which is defined in
the AspTlb unit as in Listing 3.

IIS 3/4 objects will descend from
a similar object called TASPObject,
which is defined in AspTlb as in
Listing 4.

Each of these classes encapsu-
late the details of how to obtain
instances of the IRequest,
IResponse, ISessionObject, IServer,
and IApplicationObject so that you
can focus on working with these

interfaces to make your Active
Server Object do whatever your
heart desires. Each of these
interfaces are documented in the
Microsoft Developer Network,
which can be accessed online at
http://msdn.microsoft.com.

I call the DoIt method from my
ASP by changing the line:

DelphiASPObj.{
Insert Method
name here}

to read:

DelphiASPObj.DoIt

The result is shown
in Figure 2.

COM Server Components
Another new feature in Delphi 5 is
the ability to generate a TComponent
wrapper for an Automation server.
This is done by the type library
wrapper generator, which creates
a descendant of the new
TOleServer class with properties
and methods that manipulate the
properties and methods of the
Automation server that it encapsu-
lates. The best example of this
technology is the collection of
items found on the Servers tab of
the Component Palette. The
source for these components is in
the \Delphi5\OCX\Servers subdi-
rectory. Figure 3 shows the act of

unit Main;
interface
uses
ComObj, ActiveX, AspTlb, SteveASO_TLB, StdVcl;

type
TSteveServerObj = class(TASPMTSObject, ISteveServerObj)
protected
procedure DoIt; safecall;

end;
implementation
uses
ComServ;

procedure TSteveServerObj.DoIt;
var UserAgent: string;
begin
UserAgent := Request.ServerVariables.Item['HTTP_USER_AGENT'];
Response.Write('This text is coming to you from within the Active Server ' +
'Object server. You are using a <i>' + UserAgent + '</i> web browser.');

end;
initialization
TAutoObjectFactory.Create(ComServer, TSteveServerObj, Class_SteveServerObj,
ciMultiInstance, tmApartment);

end.

➤ Above: Listing 2 ➤ Below: Listing 3

TASPMTSObject = class(TAutoObject)
private
function GetApplication: IApplicationObject;
function GetRequest: IRequest;
function GetResponse: IResponse;
function GetServer: IServer;
function GetSession: ISessionObject;

public
property Request: IRequest read GetRequest;
property Response: IResponse read GetResponse;
property Session: ISessionObject read GetSession;
property Server: IServer read GetServer;
property Application: IApplicationObject read GetApplication;

end;

TASPObject = class(TAutoObject, IASPObject)
private
FScriptingContext: IScriptingContext;
function GetApplication: IApplicationObject;
function GetRequest: IRequest;
function GetResponse: IResponse;
function GetScriptingContext: IScriptingContext;
function GetServer: IServer;
function GetSession: ISessionObject;

public
procedure OnStartPage(AScriptingContext: IUnknown); safecall;
procedure OnEndPage; safecall;
property ScriptingContext: IScriptingContext read GetScriptingContext;
property Request: IRequest read GetRequest;
property Response: IResponse read GetResponse;
property Session: ISessionObject read GetSession;
property Server: IServer read GetServer;
property Application: IApplicationObject read GetApplication;

end;

➤ Listing 4

➤ Figure 2

94 The Delphi Magazine Issue 50

editing the properties of a
TWordApplication component.

Looking at Figure 3 you may
notice that properties of the Word
Application object are not present
in the Object Inspector. This is
because the published properties
are IFDEFed out by default. In order
to see the properties, you would
need to rebuild the components
from source using the
LIVE_SERVER_AT_DESIGN_TIME condi-
tional define. Of course, the prop-
erties are left out by default for a
good reason; they don’t work
correctly.

Let me preface my explanation
by laying my cards on the table and
telling you that my company pro-
duces a suite of components that
are engineered to make Automa-
tion with MS Office applications
easier. It’s important for me to tell
you, however, that this doesn’t
taint my opinion of the compo-
nents on the Server tab, but rather
it has given me the unique perspec-
tive of knowing first-hand the
problems that needed to be solved
for such components to work cor-
rectly and therefore the ability to
see easily what problems were not
fully addressed.

The problem with the approach
of using a generic wrapper creator
to encapsulate Automation serv-
ers is it does not take into account
interdependencies amongst prop-
erties. For example, on some arbi-
trary Automation server, Property
A might not be able to be read until
Function B is called. Or Property C
might not be available until Prop-
erty D is set. And of course, no
properties or methods can be
invoked unless the Automation
server is activated. A generic

wrapper generator
can never know about
such interdependen-
cies, and therefore
would not be able to
generate a working set
of published proper-
ties for the compo-
nent wrapper.

Another issue that
arises from viewing an

Automation server’s properties at
design-time is that the property
read and write methods are imple-
mented simply to get and set the
Automation server’s properties.
This can introduce some confusion
because there is no way to distin-
guish whether one wants to have
the properties from the compo-
nent ‘pushed’ to the Automation
server or the component property
values ‘pulled’ from the Automa-
tion server.

In short, there are a lot of techni-
cal hurdles associated with pub-
lishing Automation server
properties, so Borland took the
prudent approach of IFDEFing
them out. If you are working with a
server that you know will not
experience any problems stem-
ming from the issues I just
mentioned, then you can compile
with the condition define as I
mentioned.

Properties aside, the COM
server components do serve a very
useful purpose of managing Auto-
mation server instantiation and
lifetime, which is always code I’d
rather not write by hand. Simply
drop the component and you know
that server lifetime will be properly
managed.

One additional nice new addi-
tion associated with the COM
server components, however, is
the automatic handling of events
and routing of Automation events
to Object Pascal events. This is
made possible by the TServer-
EventDispatch class found in the
new OleServer unit and the
instance of this class maintained
by TOleServer. All of the COM event
stuff happens behind the scenes,
and it is surfaced at the component

level very nicely by a single
method called InvokeEvent, which
is overridden by the type library
wrapper generator to check for the
proper dispids, unpack parame-
ters from an array of variants, and
call to the Object Pascal event.

Type Library Updates Dialog
One new product feature that
tends to leave me scratching my
head is the type library updates
dialog. You can enable this dialog
by selecting the option on the Type
Library page of the Environment
Options dialog. When enabled, you
are presented upon refresh of the
type library editor with a dialog
explaining what changed in the
type library since the last refresh
and giving you the option to selec-
tively not implement certain inter-
face methods. This dialog is shown
in Figure 4.

That’s all jim-dandy, except for
the fact that if you choose to
employ the dialog by de-selecting
any of the items in the checked
listbox, your code will not compile.
The reason for this, of course, is
that all methods of an interface
must be present in a class that
implements the interface. It’s not
possible to selectively choose not
to implement certain methods of
an interface. Interfaces, being a
contract of supported functional-
ity, are an all-or-nothing proposi-
tion. As long as you know about the
quirks of this feature going into the
game, you won’t be confused when
your code stops compiling.

Porting Gotchas
In addition to new features, there
were a few changes to the COM
support between Delphi 4 and 5
that could cause you some grief as
you try to port over your
applications.

HResult
In Delphi 4, HResult was a 32-bit
unsigned integer. The definition
has changed in Delphi 5 such that
HResult is now a 32-bit signed inte-
ger. The most likely problem this
will cause for you are some con-
stant or expression out of bounds
errors and warnings that you will
need to address by typecasting.

➤ Figure 3

October 1999 The Delphi Magazine 95

Changed Interfaces
There were also some changes to a
few interfaces defined in the
ActiveX unit that may cause your
application not to compile any
longer. In particular, the definition
of the IEnumVARIANT interface has
change rather significantly. Most
notable in this regard is parameter
two of the next method, which has
changed from an untyped out
parameter to an OleVariant passed
by reference. Ironically, the Delphi
4 definition is the more accurate,
as the SDK documentation speci-
fies that parameter two is a pointer
to an array of VARIANT structs. If you
are implementing this interface,
trying to stuff this array into the
single OleVariant var parameter
will be a fun exercise in typecast-
ing. If you’d rather not deal with
the problem, you can instead
implement the IEnumVARIANT_D4
interface, which maintains the old
definition.

The ReadMultiple and Write-
Multiple method of the IProperty-
Storage interface have also
changed, so watch out for these.

Finally, the IStream interface no
longer descends directly from
IUnknown, but now descends from
an intermediate ancestor called
ISequentialStream.

Summary
That about sizes it up for new COM
development features found in
Delphi 5. While Delphi 5 doesn’t
make the large leaps forward in
progress that Delphi 3 and 4
seemed to make in the COM arena,
there is enough there to continue
to be useful and make the game
interesting. I hope you have the
opportunity to toy with, work with,
and enjoy these features sometime
soon, and we will likely be discuss-
ing finer points of these features in
more detail over the coming
months. Until then, happy COM.

Steve Teixeira is the VP of
Software Development at DeVries
Data Systems, a Silicon Valley-
based consulting firm. You can
reach Steve at steve@dvdata.com.

➤ Figure 4

	Active Server Objects
	COM Server Components
	Type Library Updates Dialog
	Porting Gotchas
	HResult
	Changed Interfaces
	Summary

